organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,4'-(1,8-Naphthalene-1,8-diyl)dibenzonitrile

Carlos F. Lima,^a Ligia R. Gomes,^b Luís M. N. B. F. Santos^a and John Nicolson Low^{c*}

^aCentro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, ^bREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, and ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland Correspondence e-mail: inlow111@gmail.com

Received 29 November 2010; accepted 3 December 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.131; data-to-parameter ratio = 19.7.

In the title molecule, $C_{24}H_{14}N_2$, the exterior C-C-C angle of the naphthalene ring system involving the two phenylsubstituted C atoms is 126.06 (11)° and the dihedral angles between the mean plane of the naphthalene ring system and those of the benzene rings are 66.63 (5) and 67.89 (5)°. In the crystal, molecules are linked into a ladders by four weak C- $H \cdots \pi$ interactions.

Related literature

For the structure of the related compound 4-(1-napht-yl)benzonitrile, see: Lima *et al.* (2010).

Experimental Crystal data

 $C_{24}H_{14}N_2$ $V = 3447.9 (3) Å^3$
 $M_r = 330.37$ Z = 8

 Monoclinic, C2/c Mo K α radiation

 a = 17.0872 (9) Å $\mu = 0.08 \text{ mm}^{-1}$

 b = 8.2997 (4) Å T = 150 K

 c = 24.3656 (13) Å $0.40 \times 0.30 \times 0.02 \text{ mm}$
 $\beta = 93.795 (2)^{\circ}$ $0.40 \times 0.30 \times 0.02 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\rm min} = 0.971, T_{\rm max} = 0.999$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 235 parameters $wR(F^2) = 0.131$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.38$ e Å⁻³4634 reflections $\Delta \rho_{min} = -0.26$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C10 and C8-C10 rings, respectively.

11422 measured reflections

 $R_{\rm int} = 0.031$

4634 independent reflections

3482 reflections with $I > 2\sigma(I)$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C12-H12\cdots Cg2^{i}$	0.95	2.75	3.6147 (13)	152
$C16-H16\cdots Cg2^{ii}$	0.95	2.92	3.6539 (15)	135
$C82 - H82 \cdots Cg1^{i}$	0.95	2.83	3.6180 (15)	141
$C86-H86\cdots Cg1^{ii}$	0.95	2.83	3.6614 (13)	147

Symmetry codes: (i) $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $x + \frac{3}{2}, y + \frac{3}{2}, z + 1$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *OSCAIL* (McArdle *et al.*, 2004); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

CFL thanks the FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of a PhD Research Grant (SRFH/BD/29394/2006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5183).

References

McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). *CrystEngComm*, 6, 303–309.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Lima, C. F., Gomes, L. R., Santos, L. M. N. B. F. & Low, J. N. (2010). Acta Cryst. E66, 03289.

Acta Cryst. (2011). E67, o66 [doi:10.1107/S160053681005083X]

4,4'-(1,8-Naphthalene-1,8-diyl)dibenzonitrile

C. F. Lima, L. R. Gomes, L. M. N. B. F. Santos and J. N. Low

Comment

The exterior C1-C9-C8 angle of the naphthalene ring in $C_{24}H_{14}N_2$ is significantly larger, 126.106 (11)°, than that found in the two independent molecules of the single phenyl substituted compound, 4-(1-naphtyl)benzonitrile (Lima *et al.*, 2010), with values of 123.17 (11)° and 123.21 (10)° as are the angles C9–C1–C11 and C9–C8–C81, 124.93 (10)° and 124.79 (11)° as compared to the values for the single phenyl substituent of 121.463 (11)° and 121.47 (10)°.

The dihedral angles between the mean planes of the naphthalene ring and the C11—C16 ring and the C81—C86 rings are $66.33 (5)^{\circ}$ and $67.89 (5)^{\circ}$ respectively. These angles are significantly larger than those found for the single phenyl substituent in the two molecules of 4-(1-naphtyl)benzonitrile in which the naphthalene rings form dihedral angles of $60.28 (3)^{\circ}$ and $60.79 (3)^{\circ}$ for molecules 1 and 2 respectively.

C12 and C82 are linked *via* C—H···. π interactions to the centres-of-gravity of the rings C8—C10 and C1—C10 at (3/2 - *x*,3/2 - *y*,1 - *y*) respectively and C16 and C86 are linked *via* C—H··· π interactions to the centres-of-gravity of the rings C8—C10 and C1—C10 at (1 - *x*,1 - *y*,1 - *y*) respectively, Table 1. The molecules are thus linked into ladders with the molecules being stacked alternately head-to-tail as the rungs with the cyano groups and atoms C4 and C5 of the naphthalene groups pointing outwards. Alternate ladders run parallel to (110) and (-110). There is an solvent accessible void of 47 Å³ in the structure lying between the ladders. These contains no residual electron density. There is no π ··· π stacking nor are there C—H···N hydrogen bonds.

Refinement

H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, with $U_{iso} = 1.2 \text{Ueq}(\text{C})$. The positions of the H atoms were calculated and checked on a difference map during the refinement.

Figures

Fig. 1. The molecular structure of the title compound with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Stereoview of the ladders formed by C—H $\cdots\pi$ interactions (dashed lines). Hydrogen atoms not involved in the motifs are not included.

4,4'-(1,8-Naphthalene-1,8-diyl)dibenzonitrile

Crystal data

$C_{24}H_{14}N_2$	F(000) = 1376
$M_r = 330.37$	$D_{\rm x} = 1.273 \ {\rm Mg \ m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 205 reflections
a = 17.0872 (9) Å	$\theta = 7.4 - 29.2^{\circ}$
b = 8.2997 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 24.3656 (13) Å	T = 150 K
$\beta = 93.795 \ (2)^{\circ}$	Plate, white
$V = 3447.9 (3) \text{ Å}^3$	$0.40\times0.30\times0.02~mm$
Z = 8	

Data collection

Bruker SMART APEX diffractometer	4634 independent reflections
Radiation source: fine-focus sealed tube	3482 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -22 \rightarrow 23$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$k = -11 \rightarrow 6$
$T_{\min} = 0.971, \ T_{\max} = 0.999$	$l = -24 \rightarrow 33$
11422 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.131$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0635P)^{2} + 1.3141P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4634 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
235 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotroi	nic o	r ec	nivalent	isotro	nic dis	nlacement	parameters	$(Å^2$)
				1001.01			1000000000000	1001.01		p	p	(· · ·	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N14	0.69235 (9)	0.27151 (19)	0.76246 (5)	0.0427 (4)
N84	0.60515 (8)	0.8449 (2)	0.77878 (5)	0.0449 (4)
C1	0.64595 (7)	0.48335 (15)	0.49000 (5)	0.0182 (3)
C2	0.66041 (7)	0.35609 (16)	0.45575 (5)	0.0216 (3)
H2	0.6753	0.2553	0.4717	0.026*
C3	0.65391 (8)	0.36994 (17)	0.39800 (5)	0.0237 (3)
Н3	0.6644	0.2800	0.3755	0.028*
C4	0.63235 (8)	0.51393 (17)	0.37489 (5)	0.0228 (3)
H4	0.6277	0.5238	0.3360	0.027*
C5	0.59492 (7)	0.79704 (17)	0.38171 (5)	0.0225 (3)
Н5	0.5909	0.8029	0.3427	0.027*
C6	0.57980 (8)	0.93033 (17)	0.41173 (5)	0.0238 (3)
Н6	0.5655	1.0288	0.3939	0.029*
C7	0.58549 (7)	0.92080 (16)	0.46957 (5)	0.0219 (3)
H7	0.5755	1.0148	0.4902	0.026*
C8	0.60507 (7)	0.77995 (15)	0.49740 (5)	0.0183 (3)
C9	0.62271 (7)	0.63717 (15)	0.46689 (5)	0.0173 (3)
C10	0.61666 (7)	0.64945 (16)	0.40782 (5)	0.0192 (3)

C11	0.65558 (7)	0.44683 (15)	0.55012 (5)	0.0182 (3)
C12	0.71645 (7)	0.51380 (15)	0.58382 (5)	0.0199 (3)
H12	0.7517	0.5876	0.5687	0.024*
C13	0.72607 (7)	0.47384 (16)	0.63911 (5)	0.0220 (3)
H13	0.7670	0.5212	0.6620	0.026*
C14	0.67492 (8)	0.36320 (16)	0.66076 (5)	0.0226 (3)
C15	0.61429 (8)	0.29422 (16)	0.62760 (6)	0.0235 (3)
H15	0.5795	0.2194	0.6427	0.028*
C16	0.60519 (8)	0.33568 (16)	0.57243 (5)	0.0222 (3)
H16	0.5643	0.2880	0.5496	0.027*
C81	0.60545 (7)	0.78930 (15)	0.55880 (5)	0.0180 (3)
C82	0.66047 (8)	0.88695 (16)	0.58767 (5)	0.0213 (3)
H82	0.6978	0.9448	0.5682	0.026*
C83	0.66135 (8)	0.90069 (16)	0.64442 (5)	0.0227 (3)
H83	0.6997	0.9656	0.6638	0.027*
C84	0.60552 (8)	0.81858 (17)	0.67278 (5)	0.0227 (3)
C85	0.54901 (7)	0.72304 (17)	0.64435 (5)	0.0228 (3)
H85	0.5106	0.6680	0.6637	0.027*
C86	0.54928 (7)	0.70913 (16)	0.58781 (5)	0.0201 (3)
H86	0.5108	0.6443	0.5685	0.024*
C141	0.68499 (8)	0.31483 (19)	0.71759 (6)	0.0287 (3)
C841	0.60570 (8)	0.83269 (19)	0.73182 (6)	0.0297 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N14	0.0462 (8)	0.0557 (10)	0.0262 (7)	-0.0037 (7)	0.0020 (6)	0.0074 (6)
N84	0.0411 (8)	0.0708 (11)	0.0227 (7)	-0.0121 (7)	0.0020 (6)	0.0000 (7)
C1	0.0156 (5)	0.0202 (6)	0.0184 (6)	-0.0023 (5)	-0.0006 (4)	-0.0009 (5)
C2	0.0210 (6)	0.0199 (7)	0.0239 (7)	0.0000 (5)	0.0007 (5)	-0.0011 (5)
C3	0.0229 (6)	0.0258 (7)	0.0227 (7)	-0.0014 (5)	0.0042 (5)	-0.0083 (5)
C4	0.0214 (6)	0.0298 (7)	0.0173 (6)	-0.0028 (5)	0.0018 (5)	-0.0033 (5)
C5	0.0210 (6)	0.0294 (7)	0.0169 (6)	-0.0014 (5)	0.0001 (5)	0.0039 (5)
C6	0.0216 (6)	0.0244 (7)	0.0253 (7)	0.0025 (5)	0.0020 (5)	0.0061 (5)
C7	0.0202 (6)	0.0210 (7)	0.0247 (7)	0.0007 (5)	0.0036 (5)	-0.0012 (5)
C8	0.0157 (5)	0.0221 (7)	0.0171 (6)	-0.0008 (5)	0.0023 (4)	-0.0016 (5)
С9	0.0142 (5)	0.0215 (6)	0.0161 (6)	-0.0009 (4)	0.0004 (4)	-0.0008 (5)
C10	0.0155 (5)	0.0248 (7)	0.0173 (6)	-0.0027 (5)	0.0013 (4)	-0.0001 (5)
C11	0.0188 (6)	0.0175 (6)	0.0182 (6)	0.0033 (5)	0.0014 (4)	-0.0010 (5)
C12	0.0182 (6)	0.0204 (6)	0.0209 (6)	0.0007 (5)	0.0006 (5)	0.0011 (5)
C13	0.0202 (6)	0.0240 (7)	0.0211 (6)	0.0016 (5)	-0.0025 (5)	-0.0017 (5)
C14	0.0256 (6)	0.0235 (7)	0.0188 (6)	0.0043 (5)	0.0021 (5)	0.0009 (5)
C15	0.0244 (6)	0.0213 (7)	0.0249 (7)	-0.0006 (5)	0.0033 (5)	0.0032 (5)
C16	0.0213 (6)	0.0207 (7)	0.0241 (7)	-0.0026 (5)	-0.0006 (5)	-0.0007 (5)
C81	0.0193 (6)	0.0170 (6)	0.0179 (6)	0.0034 (5)	0.0023 (4)	-0.0013 (5)
C82	0.0235 (6)	0.0202 (6)	0.0206 (6)	-0.0011 (5)	0.0033 (5)	0.0001 (5)
C83	0.0247 (6)	0.0213 (7)	0.0217 (6)	-0.0016 (5)	-0.0009 (5)	-0.0022 (5)
C84	0.0250 (6)	0.0253 (7)	0.0179 (6)	0.0026 (5)	0.0022 (5)	0.0008 (5)

C85	0.0202 (6)	0.0264 (7)	0.0222 (6)	0.0006 (5)	0.0041 (5)	0.0017 (5)
C86	0.0179 (6)	0.0214 (7)	0.0212 (6)	-0.0001 (5)	0.0020 (5)	-0.0025 (5)
C141	0.0290 (7)	0.0336 (8)	0.0235 (7)	-0.0007 (6)	0.0019 (5)	0.0020 (6)
C841	0.0277 (7)	0.0384 (9)	0.0229 (7)	-0.0045 (6)	0.0011 (5)	0.0005 (6)
Geometric part	ameters (Å, °)					
N14—C141		1,1499 (19)	C11-		1.3	3971 (17)
N84—C841		1.1496 (19)	C12-	C13	1.3	3867 (17)
C1—C2		1.3785 (18)	C12-	-H12	0.9	9500
C1—C9		1.4405 (17)	C13-	C14	1.3	3951 (19)
C1-C11		1.4943 (17)	C13-	-H13	0.9	9500
C2—C3		1.4088 (18)	C14-	C15	1.3	3938 (18)
С2—Н2		0.9500	C14-		1.4	4411 (18)
C3—C4		1.3614 (19)	C15-	C16	1.3	3864 (18)
С3—Н3		0.9500	C15-	-H15	0.9	9500
C4—C10		1.4176 (18)	C16-	-H16	0.9	9500
C4—H4		0.9500	C81-	—С82	1.3	3957 (17)
C5—C6		1.3603 (19)	C81-	C86	1.3	3976 (18)
C5-C10		1.4185 (18)	C82-	C83	1.3	3864 (18)
С5—Н5		0.9500	C82-	-H82	0.9) 500
C6—C7		1.4085 (18)	C83-	C84	1.3	3926 (19)
С6—Н6		0.9500	C83-	-H83	0.9) 500
С7—С8		1.3814 (18)	C84-	-C85	1.3	3973 (18)
С7—Н7		0.9500	C84-	C841	1.4	4431 (18)
С8—С9		1.4413 (17)	C85-	C86	1.3	3829 (18)
C8—C81		1.4977 (17)	C85-	-H85	0.9) 500
C9—C10		1.4396 (17)	C86-	-H86	0.9	9500
C11—C16		1.3965 (18)				
C2—C1—C9		119.88 (11)	C13-	—С12—Н12	11	9.6
C2—C1—C11		115.18 (11)	C11-	—С12—Н12	11	9.6
C9—C1—C11		124.93 (11)	C12-	C13C14	11	9.19 (12)
C1—C2—C3		122.46 (12)	C12-	—С13—Н13	12	0.4
C1—C2—H2		118.8	C14-	—С13—Н13	12	0.4
С3—С2—Н2		118.8	C15-	C14C13	12	0.76 (12)
C4—C3—C2		119.08 (12)	C15-	C14C141	11	8.65 (13)
С4—С3—Н3		120.5	C13-	C14C141	12	0.58 (12)
С2—С3—Н3		120.5	C16-	C15C14	11	9.44 (12)
C3—C4—C10		121.23 (12)	C16-		12	0.3
С3—С4—Н4		119.4	C14-		12	0.3
C10—C4—H4		119.4	C15-	C16C11	12	0.60 (12)
C6—C5—C10		120.96 (12)	C15-		11	9.7
С6—С5—Н5		119.5	C11-	—С16—Н16	11	9.7
С10—С5—Н5		119.5	C82-	C81C86	11	8.93 (11)
C5—C6—C7		119.30 (12)	C82-	C81C8	11	9.46 (11)
С5—С6—Н6		120.4	C86-	C81C8	12	1.52 (11)
С7—С6—Н6		120.4	C83-	C82C81	12	0.86 (12)
C8—C7—C6		122.49 (12)	C83-	—С82—Н82	11	9.6
С8—С7—Н7		118.8	C81-	—С82—Н82	11	9.6

С6—С7—Н7	118.8	C82—C83—C84	119.47 (12)
С7—С8—С9	119.65 (11)	С82—С83—Н83	120.3
C7—C8—C81	115.56 (11)	С84—С83—Н83	120.3
C9—C8—C81	124.79 (11)	C83—C84—C85	120.37 (12)
C10—C9—C1	116.95 (11)	C83—C84—C841	119.90 (12)
C10—C9—C8	116.99 (11)	C85—C84—C841	119.73 (12)
C1—C9—C8	126.06 (11)	C86—C85—C84	119.56 (12)
C4—C10—C5	119.01 (12)	С86—С85—Н85	120.2
C4—C10—C9	120.40 (12)	С84—С85—Н85	120.2
C5—C10—C9	120.59 (12)	C85—C86—C81	120.79 (12)
C16-C11-C12	119.22 (12)	С85—С86—Н86	119.6
C16—C11—C1	119.01 (11)	C81—C86—H86	119.6
C12—C11—C1	121.67 (11)	N14—C141—C14	177.90 (17)
C13—C12—C11	120.78 (12)	N84—C841—C84	179.27 (18)
C9—C1—C2—C3	0.44 (19)	C2—C1—C11—C12	111.39 (14)
C11—C1—C2—C3	179.92 (11)	C9—C1—C11—C12	-69.16 (16)
C1—C2—C3—C4	-0.18 (19)	C16-C11-C12-C13	-1.45 (19)
C2—C3—C4—C10	0.18 (19)	C1—C11—C12—C13	-177.65 (12)
C10—C5—C6—C7	-0.33 (19)	C11-C12-C13-C14	1.13 (19)
C5—C6—C7—C8	-0.80 (19)	C12-C13-C14-C15	-0.6 (2)
C6—C7—C8—C9	1.79 (19)	C12-C13-C14-C141	177.82 (13)
C6—C7—C8—C81	-177.71 (11)	C13-C14-C15-C16	0.4 (2)
C2-C1-C9-C10	-0.67 (17)	C141—C14—C15—C16	-178.07 (13)
C11—C1—C9—C10	179.91 (11)	C14-C15-C16-C11	-0.7 (2)
C2—C1—C9—C8	179.44 (12)	C12-C11-C16-C15	1.22 (19)
C11—C1—C9—C8	0.02 (19)	C1-C11-C16-C15	177.52 (12)
C7—C8—C9—C10	-1.62 (17)	C7—C8—C81—C82	-65.72 (15)
C81—C8—C9—C10	177.84 (11)	C9—C8—C81—C82	114.80 (14)
C7—C8—C9—C1	178.27 (11)	C7—C8—C81—C86	110.83 (14)
C81—C8—C9—C1	-2.27 (19)	C9—C8—C81—C86	-68.65 (16)
C3—C4—C10—C5	179.57 (12)	C86—C81—C82—C83	2.07 (19)
C3—C4—C10—C9	-0.45 (19)	C8—C81—C82—C83	178.71 (12)
C6—C5—C10—C4	-179.61 (12)	C81—C82—C83—C84	-1.37 (19)
C6—C5—C10—C9	0.41 (19)	C82—C83—C84—C85	0.0 (2)
C1—C9—C10—C4	0.68 (16)	C82—C83—C84—C841	-179.70 (13)
C8—C9—C10—C4	-179.42 (11)	C83—C84—C85—C86	0.64 (19)
C1—C9—C10—C5	-179.34 (11)	C841—C84—C85—C86	-179.66 (12)
C8—C9—C10—C5	0.56 (17)	C84—C85—C86—C81	0.08 (19)
C2-C1-C11-C16	-64.81 (15)	C82—C81—C86—C85	-1.42 (18)
C9—C1—C11—C16	114.64 (14)	C8—C81—C86—C85	-177.98 (11)

Hydrogen-bond geometry (Å, °)

Cg1and Cg2 are the centroids of the C1-C10 and	d C8–C10 rings, re	espectively.		
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C12—H12···Cg2 ⁱ	0.95	2.75	3.6147 (13)	152
C16—H16···Cg2 ⁱⁱ	0.95	2.92	3.6539 (15)	135
C82—H82···Cg1 ⁱ	0.95	2.83	3.6180 (15)	141

147

C86—H86····Cg1 ⁱⁱ	0.95	2.83	3.6614 (13)
Symmetry codes: (i) $-x+3/2$, $-y+3/2$, $-z+1$; (ii) $x+3/2$	2, <i>y</i> +3/2, <i>z</i> +1.		

Fig. 2

